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MOTIVATION

§ Linear optical pattern recognition is now as relevant as ever 
for personal use, state interests, and commercial profits.

§ Linear flavor still surprisingly useful due to today’s 
relatively small processing-power-to-data-size ratio.

§ Examples include recognition (social media, military GIS, 
tolls), identification (security devices, signal searching), 
classification (tracking, discovery, matching), etc
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SCOPE & AGENDA

§ Briefly review synthetic discriminant functions (SDFs)
§ Explore ’applied’ considerations w.r.t. face recognition
§ Discuss construction, execution, and comparison of three

implemented SDFs
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HISTORY: CONSTRAINED SDFS

§ Hester and Casasent1 take a first bite with Equal
correlation plane synthetic discriminant function.

§ Kumar2 incorporates noise tolerance with Minimum
variance synthetic discriminant function. Is useless due to
difficulty in inverting noise power spectral density.

§ Mahalanobis3 controls whole plane with Minimum
average correlation filters.

§ Refregier4 combines all in optimal trade-off filter.
1C.F. Hester, D. Casasent, Multivariate technique for multiclass pattern

recognition, Appl. Opt. 19 (1980) 1758-1761.
2B.V.K. Vijaya Kumar, Minimum variance synthetic discriminant

functions, J. Opt. Soc. Am (1986) 1579-1589.
3A. Mahalanobis, B.V.K. Vijaya Kumar, D. Casasent, Minimum average

correlation filters, Appl. Opt. 26 (1987) 3630-3633.
4P. Refregier, Filter Design for optical pattern recognition: Multi-criteria

optimization approach, Opt. Let. 15 (1990) 854-856.
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HISTORY: UNCONSTRAINED AND BEYOND
§ Mahalanobis5 eliminates counterproductive restrictions

with unconstraied MACE and OTF.
§ Kumar6 then synthesized results into new distance

classifier filters.
§ Savvides7 adds false-class training to DCCF, dubbed

minimax distance transform correlation filter.
§ Tweaks continue, as recently as July 2017 with

Thirunavukkarsu’s8 disease classifier.
5A. Mahalanobis, B.V.K. Vijaya Kumar, D. Casasent, Unconstrained

correlation filters, Appl. Opt. 33 (1994) 3659-3751
6B.V.K. Vijaya Kumar, D. Casasent, A. Mahalanobis, Distance- classifier

correlation filters for multiclass recognition, Appl. Opt. 35 (1996) 3127-3133.
7M. Savvides, B.V.K. Vijaya Kumar, P.K. Khosla, Two-class minimax

distance transform correlation filter, Appl. Opt. 41 (2002) 6829-6840.
8Thirunavukkarsu, K. S. A Fast Correlation Filter Based Gradient Boosting

Classifier for Disease Diagnosis. Intl. Journ. of Adv. Re. in Comp. Sci. 8
(2017) 900-909.
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NOTATION

§ We restrict our attention to one-tuple optical signals (i.e.
black and white images) in a spatially discretized
dimension of size d1d2 “ d.

§ In a given family of the two-dimensional fast Fourier
transforms of some images of faces, we let TC,i P Cd be the
ith column vector of lexicographically ordered images of
size d be longing to person C and we let FC,i P Cd be the
same, except not belonging to person C.

§ For notational convenience, given a matrix A, we let Apeq
represent its diagonalization. Since the result is sparse, the
equivalent computational object is usually stored
compactly.
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NOTATION
Taking NT,NF to be the number of true/false images, we define

MC,t “ 1
NT

NTÿ

k“0

TC,k MC,f “ 1
NF

NFÿ

k“0

FC,k (1)

DC,t “ 1
NT

NTÿ

k“0

}TC,kpeq}2
2 DC,f “ 1

NF

NFÿ

k“0

}FC,kpeq}2
2 (2)

SC,t “ 1
NT

NTÿ

k“0

pTC,kpeq ´ MC,tpeqq˚pTC,kpeq ´ MC,tpeqq (3)

SC,f “ 1
NF

NFÿ

k“0

pFC,kpeq ´ MC,f peqq˚pFC,kpeq ´ MC,f peqq (4)

and we may interpret M as the frequency mean, D as the power
spectral density, and S as the spectral variance of the true and
false classes of person C, respectively.
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THEORY

Taking ~u to be an N by 1 column vector, we have the filters

hECPSDF; C “ TC¨pT`
C ¨TCq´1¨~u (5)

hMACE; C “ D´1
C,tTC¨pT`

C ¨D´1
C,tTCq´1¨~u (6)

hUMACE; C “ DC,tpeq´1MC,t (7)

hDCCF; C “ Stpeq´1MC,t (8)

hmMDTCF; C “ pStpeq ` Sf peqq´1pMC,t ´ MC,f q (9)

corresponding to the Cth class and where, notably, the first two
filters require true matrix operations (denoted with boldface
operators and written product dots), while the latter three
require no traditional matrix operations.
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SYNTHETIC DISCRIMINANT FUNCTION FAMILY

Distance Classifiers

Unconstrained-typeshECPSDF “ XpX`Xq´1~u

hOTF “ p↵D `
?

1 ´ ↵2Cq´1XpX`p↵D `
?

1 ´ ↵2Cq´1Xq´1~u

hUMACE “ D´1M

hDCCF “ S´1M

hMDTCF “ S´1
t pR ´ Mf q

hmMDTCF “ pSt ` Sf q´1pMt ´ Mf q
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FOCUS: APPLICATION

§ We implement ECP, MACE, UMACE, DCCF, MDTC, and
mMDTC on the first ten subjects of the Extended Yale Face
Database B9.

9Lee, Kuang-Chih, Jeffrey Ho, and David J. Kriegman. Acquiring linear
subspaces for face recognition under variable lighting. IEEE Transactions On
Pattern Analysis And Machine Intelligence no. 5 (2005): 684.
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EXT. YALE FACE DATABASE B ARCHITECTURE
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DATABASE NORMALIZATION PART 1

§ In line with standard practice, we normalize the database
to eliminate bias in the comparative filter analysis.

§ Manually identify and uniformly discard all ‘bad’ (i.e.,
ambient and/or no flash) photos.

§ Manually record face locations.
§ Algorithmically crop images based on the average face size

and location.
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DATABASE NORMALIZATION PART 2

§ Normalize color map via Retinex Method10.
§ Essentially, frequency distribution of image is mapped to a

normal curve, as in following figure.

10Park, Young Kyung, Seok Lai Park, and Joong Kyu Kim. Retinex method
based on adaptive smoothing for illumination invariant face recognition.
Signal Processing 88.8 (2008): 1929-1945.
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DATABASE NORMALIZATION BONUS PART

§ Normalize relative distance between facial features (which
is inconsistent due to yaw and pitch of bust among poses)
via projective mappings and incorporate noise adjustments

§ Implement in a future iteration
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DATABASE NORMALIZATION ARCHITECTURE
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FILTER DESIGN AND TESTING

§ Randomly choose N images (per-person) for filter design,
i.e. training data. Remaining Ntest “ 9 ¨ 10 ¨ 59 ´ N images
used for testing.

Note that our filters are designed to maximize the so-called
peak-to-sidelobe ratio (PSR) of the spatial correlation between
the filter and image. In pseudocode, we define

1 % PSR for correlation plane C
2 PSR = (max(C)́ mean(C))/std(C);
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FILTER DESIGN AND TESTING ARCHITECTURE

Normalized FFT Database Testing Database

Training Database

Filter Design h1,2,3;C
Â

Spatial Correlation Plane
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COMPARATIVE FILTER PERFORMANCE: METHOD 1

§ “Filter response” to true/false class on previous slide is
merely ideal

§ For convenient relative metric, choose maximum PSR (per
filter, per image) to be positive identification.

In particular, we map PSR responses to predicted subject
indices by

˜
PSRphMACE; 1 b ⌧1q ¨ ¨ ¨ PSRphMACE; 10 b ⌧1q

...
. . .

...
PSRphMACE; 1 b ⌧Ntest q ¨ ¨ ¨ PSRphMACE; 10 b ⌧Ntest q

¸
maxfiÑ

˜
Cp⌧1q

...
Cp⌧Ntest q

¸

for each filter, and we condense the record into a confusion
matrix.
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COMPARATIVE FILTER PERFORMANCE: METHOD 2

§ Also consider an alternative performance metric:
§ Compute integral of the receiver operating characteristic

(ROC) curve for list of PSR scores corresponding to each
filter, which generates an absolute accuracy statistic.

§ Record total filter computation time (per filter), an absolute
efficiency statistic.

§ Consider imposing a scaled l2 norm of the accuracy,
efficiency two-tuple and then rank order the filters.
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EXECUTION & RESULTS: PARAMETER CONTROL

§ Execute for N P t1, 5, 10, 15, 20u per pose, per subject, since
pose normalization is not considered.

§ Equals NTrain P t9, 45, 90, 135, 180u per subject. This implies
a training-to-testing ratio of roughly 1

100 ,
1
10 ,

1
5 ,

1
4 , and 1

3 ,
respectively.

§ At each N, randomly select among the 59
illumination-varying images, since illumination was
normalized.
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CLASS MEANS FOR NTRAIN P t9, 45, 90, 135, 180u

Notice excellent illumination reconciliation and poor pose
reconciliation, especially for small N.
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CLASS SPEC. VAR. FOR NTRAIN P t9, 45, 90, 135, 180u

Note low variance in Subject 3.
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MACE FILTERS FOR NTRAIN P t9, 45, 90, 135, 180u

Erroneous result occured when matrix inversion failed.
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UMACE FILTERS FOR NTRAIN P t9, 45, 90, 135, 180u

Note more uniform filter energy.
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DCCF FILTERS FOR NTRAIN P t9, 45, 90, 135, 180u

Filter energy appears to be less uniform than UMACE.
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ROC CURVE EXAMPLE
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CONFUSION MATS. FOR NTRAIN P t9, 45, 90, 135, 180u

Note effect of matrix inversion failure in block p2, 4q.
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TRACE PROPORTION FOR NTRAIN P t9, 45, 90, 135, 180u

Demonstrates that MACE, UMACE, and DCCF are superior to
MDTC and mMDTC, which are superior to ECP. We use
Method 2 to compare behavior more closely.
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COMPARATIVE LIMITATIONS REMARK

We would like to find some real mapping F : R2 Ñ R that
measures accuracy and efficiency pairs. Generally, we would
have some l2 norm-like mapping

b
F1pAccq2 ` F2pEffq2 (10)

which will measure of the extent of inaccuracy and inefficiency
of the filters. As desired, this would impose a well-ordering of
the filters, but it would (and must) relate accuracy and
efficiency in a manner that is not necessarily prescribed within
the context of our problem. To proceed, we use possibly fuzzy
judgment.
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METHOD 2 DATA: EFFICIENCY

Assessment: Matrix-dependent filters enjoy efficiency linearly
dependent upon training data size. Parallel processing would
eliminate this comparative inefficiency at a cost which is
unlikely to exceed comparative benefits.
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METHOD 2 DATA: ACCURACY

Assessment: ECP cannot negotiate large training sizes, MDTC
and mMDTC cannot compactify large false-class metrics,
MACE is sensitive to matrix computation issues, and UMACE
is slightly superior to DCCF.
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CONCLUSION

§ In consideration of the absolute and comparative metrics
of accuracy, efficiency, and their norms across various
NTrain, we support the claim that UMACE is followed by
DCCF and then MACE in terms of robustness with respect
to face recognition under varying illumination and pose.
The remaining filters, ECP, MDTC, and mMDTC, are said
to be inappropriate for face recognition with large or
highly varying false-classes.

§ Our finding is upheld in the literature.11

11Levine, Martin David and Yu, Yingfeng. Face recognition subject to
variations in facial expression, illumination conditions and poses using
correlation filters. IEEE Transactions Computer Vision and Image
Understanding 104 (2006) 1-15
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END

§ Future consideration: To incorporate feature data into
linear processing paradigm and consequently improve
recognition performance, it may be advantageous to
extend signal data into binary indicial spaces representing
feature on/off status.

§ Thank you for listening.
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